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Abstract Mechanical, thermal and optical properties of mod-
ified cyclo-olefin copolymers COC were studied by molec-
ular dynamics simulations and ab initio calculations. The
COC chains were modified by substituting the norbornane
rings with methyl groups and replacing ethane units with
propane. A modified Dreiding 2.21 force field was devel-
oped for the molecular dynamics simulations. The bulk and
Young’s moduli increased when the norbornane rings of COC
were substituted with methyl groups and when the ethane
units were replaced with propane. The highest glass transi-
tion temperature was obtained when the norbornane rings
were substituted with methyl groups. Ab initio calculations
of isotropic polarizability and refractive index were sensi-
tive to the applied basis set and level of theory. Good agree-
ment with available experimental data was obtained with the
B3LYP/6-311G** method. Replacement of ethane units with
propane lowered the refractive index significantly, whereas
other structural modifications had practically no effect.

Keywords Modified cyclo-olefin copolymers · Force
field · Ab initio · Physical properties · Refractive index

1 Introduction

Cyclo-olefin copolymers (COC) are amorphous or semicrys-
talline thermoplastics, which are manufactured by copoly-
merization of cyclo-olefin and olefin monomers. Typically,
cyclic monomer is norbornene or a derivative of norborn-
ene, and the olefin is ethylene or propylene. [1–6] COC have
several useful properties, such as optical clarity, excellent
dielectric strength, moisture barrier, high temperature resis-
tance and good mechanical properties [6].
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The manufacture and properties of COC have been studied
extensively by experimental techniques, with a focus on the
improvement of manufacturing technologies [7–16].
Theoretical studies have mostly been carried out on poly-
norbornane polymers and on COC prepared from ethylene
and norbornene. [17–27] COC based on propylene or deriv-
atives of norbornene have been studied to some extent [1,2,
28–35]. An ability to predict the effects of structural modifi-
cations would assist in the attempt to prepare mechanically
stronger COC materials with good optical and thermal prop-
erties.

Although, second-generation polymeric force fields, such
as PCFF [36–43] and COMPASS [44], have frequently been
applied in studies on polymer properties, they are unsuitable
for COC due to parametrization. In addition, the PCFF and
COMPASS force fields contain several terms, which correlate
with each other. Therefore, the re-optimization of these force
fields is difficult. In a previous study, we re-parametrized the
Dreiding 2.21 force field for COC consisting of ethylene and
norbornene [45]. Here, our focus is on property prediction
for COC modified with methyl groups and propane units.
For this purpose, we re-parametrized the Dreiding 2.21 force
field further to make it suitable for the prediction of mechan-
ical and thermal properties of modified COC by molecular
dynamics simulations. Optical properties were investigated
by ab initio methods.

2 Theory and computational details

The original and modified COC chains were studied with
four polymer fragments. The COC consisted of norbornane
or methyl norbornane and ethane or propane units. The ap-
plied polymer fragments were NENEENEE, N(Me)EN(Me),
N(Me)PN(Me) and NPN units, where N is norbornane unit,
E is ethane unit, Me is methyl unit and P is propane unit
(Fig. 1).

Experimentally determined crystal structures were uti-
lized as a support for the conformational analyses. Crystal
structures containing similar polymer fragments to those in
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Fig. 1 Applied molecular fragments: NENEENEE, N(Me)EN(Me),
N(Me)PN(Me) and NPN

the studied fragments were acquired from the Cambridge
Structural Database [46]. Structures containing transition met-
als and structures that were part of a rigid ring were omit-
ted. The search yielded 15 suitable crystal substructures: five
for torsion T1(C1–C2–C3–C4) of N(Me)EN(Me), five for
torsion T2(C7–C8–C9–C10) of N(Me)PN(Me) and five for

Fig. 2 Polymer fragments of modified COC in crystal structure search.
a T1 of N(Me)EN(Me), b T2 of N(Me)PN(Me) and c T3 of NPN

torsion T3(C12–C13–C14–C15) of NPN. The applied struc-
tural units are shown in Fig. 2.

The refractive indexes of COC were determined by means
of isotropic polarizibilities. The ab initio methods that were
utilized were HF and B3LYP with 6-31G* and 6-311G**
basis sets. The refractive indexes were calculated according
to the Lorentz–Lorenz equation [21]. (Eq. 1), where N is par-
ticle density, a is isotropic polarizibility and n is the refractive
index.

n2 − 1

n2 + 2
= 4πNa

3
(1)
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The Dreiding 2.21 force field was re-parametrized on the
basis of conformational analyses. The geometry optimiza-
tions and conformational analyses were carried out by HF/3-
21G and B3LYP/6-31G* methods using the Gaussian 03 pro-
gram [47]. The parameters of the Dreiding 2.21 force field
were modified to obtain the best fit with B3LYP/6-31G* cal-
culations. The focus was on independent parameters (bond
stretching, bond bending and torsion) of the force field, which
do not affect other parameters of the force field.

Molecular dynamics simulations were carried out with
the Cerius 2 program [48] with Dreiding 2.21 and modified
Dreiding 2.21 force fields. Mechanical properties (bulk mod-
ulus (B), Young’s modulus (Y) and Poisson’s ratio (υ)) were
determined by the second-derivative method [49]. The sim-
ulation cube contained five polymer chains and each chain
contained ten monomers (Fig. 3).

The glass transition temperatures (Tg) were determined
by NPT (constant particle number, pressure and tempera-
ture) molecular dynamics simulation. The temperature range
was 300–600 K for N(Me)EN(Me) and 300–500 K for N(Me)
PN(Me) and NPN. The simulation step was 1 fs and elec-
trostatic interactions were calculated by utilizing the Ewald
method with dielectric constant of 2.35. The simulations were
run for 100 ps at all temperatures. Monitoring of a specific
volume–temperature (V–T) curve enables prediction of the
glass transition temperature (Tg). The break in the slope of
the V–T curve indicates the location of the Tg. Error limits
were derived from standard deviations.

3 Results and discussion

3.1 Conformational analyses and modifications
of force fields

The N(Me)EN(Me) fragment contains two relevant torsions
for conformational analysis, and the N(Me)PN(Me) and NPN
fragments contain three. The conformational energy curves
are presented in Fig. 4 for torsions T1(C1–C2–C3–C4) of
N(Me)EN(Me), T2(C7–C8–C9–C10) of N(Me)PN(Me) and
T3(C12–C13–C14–C15) of NPN, in which the original Dre-
iding 2.21 indicated most deviations from the ab initio cal-
culations.

In torsion T1 of N(Me)EN(Me), the global minimum ap-
peared at dihedral angle of 60.0◦ and the local minima at the
points −60.0◦ and 180.0◦. The global maximum appeared at
dihedral angle of 0◦ and the other maxima at points −100.0◦
and 140.0◦. All crystal structures were found at the global
minimum point in agreement with ab initio calculations. In
the case of torsion 2 of N(Me)PN(Me) and torsion 3 of NPN
(Fig. 3), the global minima were at the point 180.0◦ and lo-
cal minima at the points −60.0◦ and +60.0◦. The potential
energy curves determined by ab initio calculations were in
good agreement with the crystal structure findings. The orig-
inal Dreiding 2.21 force field failed in the potential energy
description for torsion T1 of N(Me)EN(Me) in general and
for torsionT2 of N(Me)PN(Me) between−180.0◦ and−0.0◦.

Fig. 3 The simulation cube of N(Me)EN(ME) type COC

To improve its performance, we re-optimized the force field
parameters (modified Dreiding 2.21) to make them suitable
for the utilized COC fragments. The bond-stretching and
bond-bending parameters were obtained from the work of
Ahmed et al. [27] and the torsion terms were re-optimized
by producing the new parameters from B3LYP/6-31G* tor-
sional behavior (Table 1). The torsion term of the Dreiding
2.21 force field is presented in Eq. 2. With all potential energy
curves, agreement was obtained between modified Dreiding
2.21 and ab initio curves.

ETorsion =
∑

n

1

2
Vn{1 − cos(ϕ − ϕ0)} (2)

3.2 Prediction of mechanical and thermal properties
by molecular dynamics simulations

The re-optimized Dreiding 2.21 force field was utilized for
the prediction of mechanical and thermal properties of modi-
fied COC. Mechanical properties (bulk modulus (B),Young’s
modulus (Y ), and Poisson’s ratio (υ)) and thermal properties
(glass transition temperature (Tg)) of modified COC were
calculated by force-field-based molecular dynamics simula-
tions with both modified and original Dreiding 2.21 force
fields. Where available, experimental data was utilized as a
support for the simulations. The results are listed in Table 2.

Table 1 The original and modified parameters of the Dreiding 2.21
force field for modified COC

Torsion (NEN) Dreiding 2.21 Mod. Dreiding 2.21
{T1 and T2} (kcal/(mol Å2 )) (kcal/(mol Å2 ))

V1 0 0
V2 2.0 1.82
V3 0 4.48
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Fig. 4 Potential energy curves for modified COC. The bar diagram compares the hits of the crystal structure search with the calculated confor-
mations. a T1 of N(Me)EN(Me), b T2 of N(Me)PN(Me) and c T3 of NPN

Table 2 Results of molecular dynamics simulations for modified COC

Property COC type Dreiding 2.21 Mod. Dreiding 2.21 Experimental [6,33]

B (GPa) NEN 3.54 [45] 4.78 [45] 4.1–5.9
N(Me)EN(Me) 2.26 5.20
NPN 5.95 5.43 –
N(Me)PN(Me) 3.50 4.29 –

Y (GPa) NEN 3.85 [45] 3.45 [45] 3.2
N(Me)EN(Me) 2.80 4.64 –
NPN 5.16 5.88 –
N(Me)PN(Me) 4.08 3.98 –

ν NEN 0.32 [45] 0.38 [45] 0.37–0.41
N(Me)EN(Me) 0.38 0.33 –
NPN 0.33 0.33 –
N(Me)PN(Me) 0.31 0.34 –

Tg ( ◦C) NEN 277 ±14.5 [45] 227 12.9 [45] 200
N(Me)EN(Me) 119 ±27.2 249 ±14.9 –
NPN 49 ±25.2 121 ±11.4 131
N(Me)PN(Me) 210 ±14.6 161 ±14.5 –
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Table 3 Calculated isotropic polarizabilities for COC structures

Refractive index HF/6-31G* HF/6-311G** B3LYP/6-31G* B3LYP/6-311G**

NENEENEE 296.5 316.2 314.7 341.4
N(Me)EN(Me) 190.1 203.4 201.8 219.6
NPN 159.6 170.3 168.5 183.1
N(Me)PN(Me) 199.8 213.9 212.1 231.0
[NENEENEE]2 444.9 474.1 474.2 515.7
[N(Me)EN(Me)]2 294.1 313.9 312.7 339.4
[NPN]2 253.6 269.9 268.9 291.1
[N(Me)PN(Me)]2 313.9 335.3 335.1 364.0

Table 4 Calculated refractive indexes for COC structures

Refractive index HF/6-31G* HF/6-311G** B3LYP/6-31G* B3LYP/6-311G** Experimental [6]

NENEENEE 1.444 1.479 1.476 1.524 1.530
N(Me)EN(Me) 1.440 1.476 1.472 1.521 –
NPN 1.406 1.437 1.432 1.475 –
N(Me)PN(Me) 1.439 1.475 1.470 1.520 –
[NENEENEE]2 1.446 1.475 1.480 1.524 1.530
[N(Me)EN(Me)]2 1.440 1.475 1.472 1.520 –
[NPN]2 1.415 1.445 1.443 1.486 –
[N(Me)PN(Me)]2 1.439 1.474 1.473 1.522 –

The bulk and Young’s moduli were clearly higher for
N(Me)EN(Me)-type than for NEN-type COC. This is due
to methyl groups, which increase a stiffness of the polymer
chains, thereby resulting in higher bulk and Young’s mod-
uli. In addition, the electropositive methyl groups can donate
electron density to the backbone C–C bonds and strengthen
the polymer chains. However, this effect is less important
since the methyl groups do not locate near the backbone C–C
bonds. The lower Poisson’s ratio of N(Me)EN(Me) indicated
that the material was also more rigid. The glass transition tem-
perature of N(Me)EN(Me) was higher because the methyl
groups hindered the movements of polymer chains.

An opposite trend was observed for N(Me)PN(Me) copo-
lymer. The calculated bulk and Young’s moduli were lower
than in NPN copolymer (Table 2). The N(Me)PN(Me)-type
COC contains several methyl groups and all methyl groups
together affect as plasticizer agents by increasing cavity vol-
umes of polymer chains. This results in lower bulk and
Young’s modulus values compared to NPN molecule, which
contains only one methyl group. The slightly higher Pois-
son’s ratio of N(Me)PN(Me) copolymer indicated greater
flexibility of the material, likewise predicting lower values
for Young’s and bulk moduli. The glass transition tempera-
ture was higher for N(Me)PN(Me) due to the steric effect of
the methyl groups. A similar trend was observed by Bergs-
tröm et al. [32,50] in experiments with phenylnorbornene
and indanylnorbornene.

Since polypropylene has a higher B, Y and Tg than poly-
ethylene, NPN copolymer was expected to have higher B, Y
and Tg than NEN copolymer. The bulk and Young’s moduli
of NPN were higher, while the Poisson’s ratio was lower than
the corresponding values of NEN. However, the Tg was an
exception. According to Tritto et al. [30] this is due to the ste-
ric repulsion of the methyl groups of propylene units, which
increases the cavity volume of the polymer chains, resulting

in lower Tg. However, this phenomenon appears only, if the
amount of norbornane units in polymer chains is less than
80%. Higher amounts of the norbornane units can increase
Tg of NPN copolymer up to 260◦ C [33].

3.3 Prediction of optical properties by ab initio methods

Refractive indexes of both modified and non-modified COC
were studied by ab initio methods. The refractive indexes of
polynorbornane have earlier been studied by ab initio as well
as semiempirical methods by Hasselwander et al. [21]who
found ab initio methods to be useful for this purpose. Their
larger basis set improved the calculated isotropic polarizabil-
ities and refractive indexes significantly, and the best agree-
ment with experimental value was attained by Sadlej [51]
basis set. In our study, isotropic polarizabilites were calcu-
lated by HF and B3LYP methods with basis sets 6-31G*
and 6-311G**. The isotropic polarizabilities are listed in Ta-
ble 3. The refractive indexes were calculated from the isotro-
pic polarizabilities with the Lorentz–Lorentz equation. The
refractive indexes were determined at wavelength 589 nm and
where available, experimental data were utilized as a check
on the results. The calculated refractive indexes are listed in
Table 4.

Experimental data were available only for the non-modi-
fied COC. In addition to the level of theory, the calculations of
refractive index are sensitive to the basis set. The best agree-
ment with the experimental refractive index was obtained by
B3LYP/6-311G** method, which seems to produce a refrac-
tive index very close to experimental values. Increasing the
number of repeating units from one to two has practically no
effect. The modifications of COC did not change the refrac-
tive indexes significantly, except for the NPN copolymer for
which the refractive index was lower.A plausible explanation
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for this is that the electron density of the NPN molecule is
low and therefore, the isotropic polarizability is also low.

4 Conclusions

Mechanical and thermal properties of modified COC were
studied by molecular simulations using a modified Dreiding
2.21 force field. The non-correlating parameters of the Dreid-
ing 2.21 force field were optimized by searching for the best
fit to the B3LYP potential energy curves. Crystal structures
recovered from the Cambridge Structural Database were uti-
lized to verify the correctness of the observed potential energy
minima and maxima.

Addition of methyl groups to the norbornane rings of
NEN-type COC clearly increased both bulk and Young’s
moduli. Apparently, the introduction of methyl substituents
improve bulk and Young’s moduli by increasing a stiffness
of the polymer chains. The glass transition temperature in-
creased as well, since the methyl groups hindered the move-
ments of the polymer chains. Replacement of ethane with
propane unit (NPN copolymer) in the COC chain increased
the bulk and Young’s moduli due to the higher stiffness of
polymer chains. However, the glass transition temperature of
the NPN copolymer was lower than that of the NEN copoly-
mer because the steric repulsion of the methyl groups of the
propane increases the cavity volume of the polymer chains,
and thereby lowers the Tg.

The performance of various ab initio methods for the pre-
diction of refractive indexes of modified and non-modified
COC was studied. The calculations of the refractive index
were sensitive to the applied basis set and level of theory.
A good match with experimental data was obtained with the
B3LYP/6-311G** method. The effects of the structural mod-
ifications were insignificant, except for the NPN copolymer,
which had a lower refractive index.
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